COLp spaces—the local structure of non-commutative Lp spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOMOGENEOUS HILBERTIAN SUBSPACES OF NON-COMMUTATIVE Lp SPACES

December 22, 1999 Abstract. Suppose A is a hyperfinite von Neumann algebra with a normal faithful normalized trace τ . We prove that if E is a homogeneous Hilbertian subspace of Lp(τ) (1 ≤ p < ∞) such that the norms induced on E by Lp(τ) and L2(τ) are equivalent, then E is completely isomorphic to the subspace of Lp([0, 1]) spanned by Rademacher functions. Consequently, any homogeneous Hilberti...

متن کامل

EMBEDDINGS OF NON - COMMUTATIVE Lp - SPACES INTO NON - COMMUTATIVE L 1 - SPACES , 1 < p < 2 Marius Junge

It will be shown that for 1 < p < 2 the Schatten p-class is isometrically isomorphic to a subspace of the predual of a von Neumann algebra. Similar results hold for non-commutative Lp(N, τ)-spaces defined by a finite trace on a finite von Neumann algebra. The embeddings rely on a suitable notion of p-stable processes in the non-commutative setting. Introduction and Notation The theory of p-stab...

متن کامل

Integral Non-commutative Spaces

A non-commutative space X is a Grothendieck category ModX. We say X is integral if there is an indecomposable injective X-module EX such that its endomorphism ring is a division ring and every X-module is a subquotient of a direct sum of copies of EX . A noetherian scheme is integral in this sense if and only if it is integral in the usual sense. We show that several classes of non-commutative ...

متن کامل

Subspaces of Non-commutative Spaces

This paper concerns the closed points, closed subspaces, open subspaces, weakly closed and weakly open subspaces, and effective divisors, on a non-commutative space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2004

ISSN: 0001-8708

DOI: 10.1016/j.aim.2003.08.010